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Synopsis 
 

The U.S. National Aeronautics and Space Administration (NASA) Earth Observing 
System (EOS) currently “produces a regular global estimate of daily gross primary productivity 
(GPP) and annual net primary productivity (NPP) of the entire terrestrial earth surface at 1-km 
spatial resolution, 110 million cells, each having GPP and NPP computed individually” (Running 
et al. 2004). Now the latest Collection6 (C6 hereafter) has a higher spatial resolution of 500m, 
greatly enhancing the usefulness of the data products at local scale.  This guide provides a 
description of the C6 Gross and Net Primary Productivity algorithms (MO[Y]D17A2H/A3H) 
designed for the MODIS sensor aboard the Aqua and Terra platforms and their year-end gap-filled 
data products (MO[Y]D17A2HGF/A3HGF).   The resulting 8-day products, beginning in 2000 
and continuing to the present, are archived at a NASA DAAC (Distributed Active Archive Center). 
This document is intended to provide both a broad overview and sufficient detail to allow for the 
successful use of the data in research and applications. 
 
1. The Algorithm, Background and Overview 
 

The derivation of a satellite estimate of terrestrial NPP has three theoretical components: 
(1) the idea that plant NPP is directly related to absorbed solar energy, (2) the theory that a 
connection exists between absorbed solar energy and satellite-derived spectral indices of 
vegetation, and (3) the assumption that there are biophysical reasons why the actual conversion 
efficiency of absorbed solar energy may be reduced below the theoretical potential value. We will 
briefly consider each of these components.  
 
 1.1. Relating NDVI, APAR, GPP, and NPP  
 
 The original logic of John L. Monteith (1972) suggested that the NPP of well-watered and 
fertilized annual crop plants was linearly related to the amount of solar energy the plants absorbed 
over a growing season.  This logic combined the meteorological constraint of available sunlight 
reaching a site with the ecological constraint of the amount of leaf area absorbing the solar energy, 
while avoiding many complexities of canopy micrometeorology and carbon balance theory.   
Measures of absorbed photosynthetically active radiation (APAR) integrate the geographic and 
seasonal variability of day length and potential incident radiation with daily cloud cover and 
aerosol attenuation of sunlight.  In addition, APAR implicitly quantifies the amount of leafy 
canopy that is displayed to absorb radiation (i.e., LAI).  A conversion efficiency, ε, translates 
APAR (in energy units) to final tissue growth, or NPP (in biomass). GPP is the initial daily total 
of photosynthesis, and daily net photosynthesis (PSNnet) subtracts leaf and fine-root respiration 
over a 24-hour day.  NPP is the annual sum of daily net PSN minus the cost of growth and 
maintenance of living cells in permanent woody tissue.  Monteith’s logic, therefore, combines the 
meteorological constraint of available sunlight reaching a site with the ecological constraint of the 
amount of leaf-area capable of absorbing that solar energy.   Such a combination avoids many of 
the complexities of carbon balance theory. 

The radiation use efficiency logic requires an estimate of APAR, while the more typical 
application of remote sensing data is to provide an estimate of FPAR, the fraction of incident PAR 
absorbed by the surface. Sellers (1987) showed that APAR could be estimated from remote 
sensing.   Spectral vegetation indexes such as NDVI most directly quantify the fraction of 
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photosynthetically active radiation (FPAR) that is absorbed (ranging from 0 to 1): FPAR = 
APAR/PAR ≈ NDVI.  APAR depends upon (1) the geographic and seasonal variability of day 
length and potential incident radiation, as modified by cloud cover and aerosols, and (2) the amount 
and geometry of displayed leaf material. 

Measurements or estimates of PAR are therefore required in addition to the remotely 
sensed FPAR.  Fortunately, for studies over small spatial domains with in situ measurements of 
PAR at the surface, the derivation of APAR from satellite-derived FPAR is straightforward.   
Implementation of radiation use efficiency for the MODIS productivity algorithm depends on 
global daily estimates of PAR, ideally at the same spatial resolution as the remote sensing inputs, 
a challenging problem.  Currently, large-scale meteorological data are provided by the NASA 
GMAO, see details below.   
 
 

Figure 1.  Analysis of the geographic variation in climatic controls of terrestrial net primary 
production from water, temperature, and radiation limitations.  Data are from Nemani and 
colleagues (2003). 
 
1.2. Biophysical variability of  e 

 
The PAR conversion efficiency e, varies widely with different vegetation types (Field et 

al. 1995, Prince and Goward 1995, Turner et al. 2003).  There are two principle sources of this 
variability.  First, with any vegetation, some photosynthesis is immediately used for maintenance 
respiration.  For the annual crop plants from the original theory of Monteith (1972), these 
respiration costs were minimal, so e was typically around 2 gC/MJ.  Respiration costs, however, 
increase with the size of perennial plants.  Hunt (1994) found published e values for woody 
vegetation were much lower, from about 0.2 to 1.5 gC/MJ, and hypothesized that this was the 
result of respiration from the 6-27% of living cells in the sapwood of woody stems (Waring and 
Running 2010).  

The second source of variability in e is attributed to suboptimal climatic conditions. To 
extrapolate Monteith’s original theory, designed for well-watered crops only during the growing 
season, to perennial plants living year around, certain severe climatic constraints must be 
recognized. Evergreen vegetation such as conifer trees or schlerophyllous shrubs absorb PAR all 
during the non-growing season, yet sub-freezing temperatures stop photosynthesis because leaf 
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stomata are forced to close (Waring and Running 2010). As a global generalization, we truncate 
GPP on days when the air temperature is below 0 °C. Additionally, high vapor pressure deficits, > 
2000 Pa, have been shown to induce stomatal closure in many species. This level of daily 
atmospheric water deficit is commonly reached in semi-arid regions of the world for much of the 
growing season.   So, our algorithm mimics this physiological control by progressively limiting 
daily GPP by reducing e when high vapor pressure deficits are computed from the surface 
meteorology.   We also assume nutrient constraints on vegetation growth to be quantified by 
limiting leaf area, rather than attempting to compute a constraint through e. This assumption isn’t 
entirely accurate, as ranges of leaf nitrogen and photosynthetic capacity occur in all vegetation 
types (Reich et al. 1994, Reich et al. 1995, Turner et al. 2003). Spectral reflectances are somewhat 
sensitive to leaf chemistry, so the MODIS derived FPAR and LAI may represent some differences 
in leaf nitrogen content, but in an undetermined way. 
 To quantify these biome- and climate-induced ranges of e, we simulated global NPP in 
advance with a complex ecosystem model, BIOME-BGC, and computed the e or conversion 
efficiency from APAR to final NPP.   This Biome Parameter Look-Up Table or BPLUT contains 
parameters for temperature and VPD limits, specific leaf area and respiration coefficients for 
representative vegetation in each biome type (Running et al. 2000, White et al. 2000). The BPLUT 
also defines biome differences in carbon storage and turnover rates.  

Since the relationships of temperature to the processes controlling GPP and those 
controlling autotrophic respiration have fundamentally different, it seems likely that the empirical 
parameterization of the influence of temperature on production efficiency would be more robust if 
the gross production and autotrophic respiration processes were separated. This is the approach 
employed in the MOD17 algorithm. 
 
1.3. The MO[Y]D17A2H/MO[Y]D17A3H algorithm logic 

 
1.3.1. Gross primary productivity.  

 
The core science of the algorithm is an application of the described radiation conversion 

efficiency concept to predictions of daily GPP, using satellite-derived FPAR (from MOD15) and 
independent estimates of PAR and other surface meteorological fields (from DAO data, now 
renamed to GMAO/NASA), and the subsequent estimation of maintenance and growth respiration 
terms that are subtracted from GPP to arrive at annual NPP.  The maintenance respiration (MR) 
and growth respiration (GR) components arise from allometric relationships linking daily biomass 
and annual growth of plant tissues to satellite-derived estimates of leaf area index (LAI, MOD15).   
These allometric relationships have been developed from an extensive literature review, and 
incorporate the same parameters as those used in the BIOME-BGC ecosystem process model 
(Running and Hunt 1993; White et al. 2000). 

For any given pixel within the global set of 500m land pixels, estimates of both GPP and 
NPP are calculated.   The calculations, summarized in Figure 1.1, are a series of steps, some (e.g., 
GPP) are calculated daily, and others (e.g., NPP) on an annual basis.  Calculations of daily 
photosynthesis (GPP) are shown in the upper flowchart of Figure 1.1.  An 8-day estimate of FPAR 
from MOD15 and daily estimated PAR from GMAO/NASA are multiplied to produce daily APAR 
for the pixel.  Based on the at-launch landcover product (MOD12), a set of biome-specific radiation 
use efficiency parameters are extracted from the Biome Properties Look-Up Table (BPLUT) for 
each pixel.  There are five parameters used to calculate GPP, as shown in Table 1.1.  The actual 
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biome-specific values associated with these parameters will be discussed in Section 3, and the 
entire BPLUT is shown in Table 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1. Flowcharts showing the logic behind the MOD17 Algorithm in calculating both  8-
day average GPP and annual NPP.   
 

Table 1.1. BPLUT parameters for daily gross primary productivity. 
Parameter Units Description 
emax (kg C MJ-1) The maximum radiation conversion efficiency 
TMINmax (°C) The daily minimum temperature at which e = emax (for 

optimal VPD) 
TMINmin (°C) The daily minimum temperature at which e = 0.0 (at any 

VPD) 
VPDmax (Pa) The daylight average vapor pressure deficit at which  

e = emax (for optimal TMIN) 
VPDmin (Pa) The daylight average vapor pressure deficit at which  

e = 0.0 (at any TMIN) 
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The two parameters for TMIN and the two parameters for VPD are used to calculate the 

scalars that attenuate emax to produce the final e (kg C MJ-1) used to predict GPP such that 
 

e = emax * TMIN_scalar * VPD_scalar       (1.1) 
 
The attenuation scalars are simple linear ramp functions of daily TMIN and VPD, as illustrated 
for TMIN in Figure 1.2.  Values of TMIN and VPD are obtained from the GMAO/NASA dataset, 
while the value of emax  is obtained from the BPLUT.   

 
 

 
Figure 1.2.  The TMIN and VPD attenuation scalars are simple linear ramp functions of daily 
TMIN and VPD.  
 
The resulting radiation use efficiency coefficient e is combined with estimates of APAR to 
calculate GPP (kg C day-1) as 
 

GPP = e * APAR          (1.2) 
 
where APAR = IPAR * FPAR.  IPAR (PAR incident on the vegetative surface) must be estimated 
from incident shortwave radiation (SWRad, provided in the GMAO/NASA dataset) as  
 

IPAR = (SWRad * 0.45)        (1.3) 
 
While GPP (Equation 1.2) is calculated on a daily basis, 8-day summations of GPP are created and 
these summations are available to the public.  The summations are named for the first day included 
in the 8-day period.   
 
~  Each summation consists of 8 consecutive days of data, and there are 46 such summations 
created for each calendar year of data collection.  To obtain an estimate of daily GPP for this 8-
day period, it is necessary to divide the value obtained during a data download by eight for the 
first 45 values/year and by five (or six in a leap year) for the final period. 
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1.3.2. Daily maintenance respiration and net photosynthesis.   
 
Maintenance respiration costs (MR) for leaves and fine roots are summarized in the center 

flowchart of Figure 1.1 and are also calculated on a daily basis. There are five parameters within 
the BPLUT (Table 1.2) needed to calculate daily MR, which is dependent upon leaf or fine root 
mass, base MR at 20 °C, and daily average temperature.  Leaf mass (kg) is calculated as  
 

Leaf_Mass = LAI / SLA        (1.4) 
 
where LAI, the leaf area index (m2 leaf m-2 ground area), is obtained from MOD15 and the specific 
leaf area (SLA, projected leaf area kg-1 leaf C) for a given pixel is obtained from the BPLUT. 
 
Table 1.2. BPLUT parameters for daily maintenance respiration. 
Parameter Units Description 
SLA (m2 kg C-1) Projected leaf area per unit mass of leaf carbon 
froot_leaf_ratio None Ratio of fine root carbon to leaf carbon 
leaf_mr_base (kg C kg C-1 day-1) Maintenance respiration per unit leaf carbon per 

day at 20 °C 
froot_mr_base (kg C kg C-1 day-1) Maintenance respiration per unit fine root carbon 

per day at 20 °C 
Q10_mr None Exponent shape parameter controlling respiration 

as a function of temperature 
 
Fine root mass (Fine_Root_Mass, kg) is then estimated as 
 

Fine_Root_Mass = Leaf_Mass * froot_leaf_ratio     (1.5) 
 
where froot_leaf_ratio is the ratio of fine root to leaf mass (unitless) as obtained from the BPLUT. 
 
Leaf maintenance respiration (Leaf_MR, kg C day-1) is calculated as 
 

Leaf_MR = Leaf_Mass * leaf_mr_base * Q10_mr [(Tavg - 20.0) / 10.0]   (1.6) 
 
where leaf_mr_base is the maintenance respiration of leaves (kg C kg C-1 day-1) as obtained from 
the BPLUT and Tavg is the average daily temperature (°C) as estimated from the GMAO/NASA 
meteorological data. 
 
The maintenance respiration of the fine root mass (Froot_MR, kg C day-1) is calculated as  
 

Froot_MR = Fine_Root_Mass * froot_mr_base * Q10_mr [(Tavg - 20.0) / 10.0]  (1.7) 
 
where froot_mr_base is the maintenance respiration per unit of fine roots (kg C kg C-1 day-1) at 20 
°C as obtained from the BPLUT. 
 
Finally, PSNnet (kg C day-1) can be calculated from GPP (Equation 1.2) and maintenance 
respiration (Equations 1.6, 1.7) as 
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PSNnet = GPP – Leaf_MR - Froot_MR      (1.8) 
 
As with GPP, PSNnet is summed over an 8-day period.   
 
~   This product does not include the maintenance respiration associated with live wood 
(Livewood_MR), nor does it include growth respiration (GR). 
  
1.3.3. Annual maintenance respiration 

 
Given a calendar year’s worth of outputs from the daily algorithm, the annual algorithm 

(Figure 1.1, lower flowchart) estimates annual NPP by first calculating live woody tissue 
maintenance respiration, and then estimating growth respiration costs for leaves, fine roots, and 
woody tissue using values defined in Table 1.3. Finally, these components are subtracted from the 
accumulated daily PSNnet to produce an estimate of annual NPP. 

 
Table 1.3. BPLUT parameters for annual maintenance and growth respiration. 
Parameter Units Description 
livewood_leaf_ratio None Ratio of live wood carbon to annual 

maximum leaf carbon 
livewood_mr_base (kg C kg C-1 day-1) Maintenance respiration per unit live 

wood carbon per day at 20 °C 
leaf_longevity (yrs) Average leaf lifespan 
leaf_gr_base (kg C kg C-1) Respiration cost to grow a unit of leaf 

carbon 
froot_leaf_gr_ratio None Ratio of live wood to leaf annual growth 

respiration 
livewood_leaf_gr_ratio None Ratio of live wood to leaf annual growth 

respiration 
deadwood_leaf_gr_ratio None Ratio of dead wood to leaf annual growth 

respiration 
ann_turnover_proportion None Annual proportion of leaf turnover 

 
Annual maximum leaf mass, the maximum value of daily leaf mass, is the primary input 

for both live wood maintenance respiration (Livewood_MR) and whole-plant growth respiration 
(GR).  To account for Livewood_MR, it is assumed that the amount of live woody tissue is (1) 
constant throughout the year, and (2) related to annual maximum leaf mass. Once the live woody 
tissue mass has been determined, it can be used to estimate total annual livewood maintenance 
respiration. This approach relies on empirical studies relating the annual growth of leaves to the 
annual growth of other plant tissues. The compilation study by Cannell (1982) is an excellent 
resource, providing the basis for many of the relationships developed for this portion of the 
MOD17 algorithm and tested with the BIOME-BGC ecosystem processes model. Leaf longevity 
is required to estimate annual leaf growth for evergreen forests but is assumed to be less than one 
year for deciduous forests, which replace all foliage annually. This logic further assumes that there 
is no litterfall in deciduous forests until after maximum annual leaf mass has been attained.  The 
parameters relating annual leaf growth respiration costs to annual fine root, live wood, and dead 
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wood growth respiration were calculated directly from similar parameters developed for the 
BIOME-BGC model (White et al. 2000). 

To create the annual NPP term, the MOD17 algorithm maintains a series of daily pixel-
wise terms to appropriately account for plant respiration.  To determine livewood maintenance 
respiration, the mass of livewood (Livewood_Mass, kg C) is calculated as  
 

Livewood_Mass = ann_leaf_mass_max * livewood_leaf_ratio   (1.9) 
 
where ann_leaf_mass_max is the annual maximum leaf mass for a given pixel (kg C) obtained 
from the daily Leaf_Mass calculation (Equation 1.4). The livewood_leaf_ratio is the ratio of live 
wood mass to leaf mass (unitless), and is obtained from the BPLUT.   
 
Once the mass of live wood has been determined, it is possible to calculate the associated 
maintenance respiration (Livewood_MR, kg C day-1) as 
 

Livewood_MR = Livewood_Mass * livewood_mr_base * annsum_mrindex (1.10) 
 
where livewood_mr_base (kg C kg C-1 day-1) is the maintenance respiration per unit of live wood 
carbon per day from the BPLUT and annsum_mrindex is the annual sum of the maintenance 
respiration term Q10_mr [(Tavg-20.0)/10.0]. 
 
Q10 is a constant value of 2.0 for fine root and live wood.  For leaf, we adopted a temperature 
acclimated Q10 equation proposed by Tjoelker et al. (2001), 
 
 Q10 = 3.22 – 0.046 * Tavg        (1.11) 
 
1.3.4. Annual growth respiration and net primary productivity 

 
The original algorithm calculated growth respiration (Rg) as a function of annual maximum 

LAI, and thus, the accuracy of Rg is determined by the accuracy of LAImax.  However, when LAI 
is greater than 3.0, surface reflectances have low sensitivity to LAI and the MODIS LAI is 
retrieved, in most cases, under reflectance saturation conditions (Myneni et al., 2002).  Generally, 
for forests, annual MODIS LAImax is set to be 6.8 for pixels classified as forests.  This logic can 
generate Rg values that are greater than NPP. Rg is the energy cost for constructing organic 
compounds fixed by photosynthesis, and it is empirically parameterized as 25% of NPP (Ryan 
1991, Cannell et al. 2000). To improve the algorithm, we replaced the LAImax dependent Rg with 
Rg = 0.25 * NPP, and annual MODIS NPP can be computed as 

 
NPP = GPP – Rm – Rg = GPP – Rm – 0.25*NPP                       (1.12) 

 
where Rm is annual plant maintenance respiration, and therefore, 
 
 NPP = 0.8 * (GPP – Rm)  when  GPP – Rm >=0, and 
 NPP = 0    when  GPP – Rm <  0     (1.13) 
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2.  Operational Details of MOD17 and Primary Uncertainties in the MOD17 Logic 
  

A number of issues are important in implementing this algorithm for a global NPP. This 
section discusses some of the assumptions and special issues involved in development of the input 
variables, and their influence on the final NPP. 

 
2.1. Dependence on MODIS Land Cover Classification (MCDLCHKM) 

 
One of the first MODIS products used in the MOD17 algorithm is the Land Cover Product, 

MCDLCHKM. The importance of this product cannot be overstated as the MOD17 algorithm 
relies heavily on land cover type through use of the BPLUT.  While the primary product created 
by MOD12 is a 17-class IGBP (International Geosphere-Biosphere Programme) landcover 
classification map (Running et al. 1994, Belward et al. 1999, Friedl et al. 2010), the MOD17 
algorithm employs Boston University’s UMD classification scheme (Table 2.1).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1. Collection5 1-km MODIS ET used land cover type 2 in 1-km Collection4 MOD12Q1 
dataset. Whereas Collection6 operational 500-m MODIS ET is using land cover type 1 in 
Collection5.1 500-m MCDLCHKM which is a 3-year smoothed MODIS land cover data set.  This 
figures shows land cover types from the Collection4 MOD12Q1 dataset: Evergreen Needleleaf 
Forest (ENF), Evergreen Broadleaf Forest (EBF), Deciduous Needleleaf Forest (DNF), 
Deciduous Broadleaf Forest (DBF), Mixed forests (MF), Closed Shrublands (CShrub), Open 
Shrublands (OShrub), Woody Savannas (WSavanna), Savannas (Savanna), grassland (Grass), 
and Croplands (Crop).  Note that in this figure, we combined CShrub and OShrub into Shrub, and 
WSavanna and Savannas into Savanna. Globally, Collection5.1 500-m MCDLCHKM has a 
similar spatial pattern to this image. 
 

Given the global nature and daily time-step of the MODIS project, a broad classification 
scheme, which retains the essence of land cover, is necessary.  Since Collection 6 MODIS products 
are designed at a 0.5-km grid scale, it can be difficult to obtain accurate land cover in areas with 
complex vegetation, and misclassification can occur.  However, studies have suggested that the 
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MODIS vegetation maps are accurate to within 65-80%, with higher accuracies for pixels that are 
largely homogeneous, and allow for consistent monitoring of the global land cover (Friedl et al. 
2010). 

 
Table 2.1. The land cover types used in the MOD17 Algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2. The BPLUT and constant biome properties 

 
Arguably, the most significant assumption made in the MOD17 logic is that biome-specific 

physiological parameters do not vary with space or time.  These parameters are outlined in the 
BPLUT (Table 2.2) within the MOD17 algorithm. The BPLUT constitutes the physiological 
framework for controlling simulated carbon sequestration.  These biome-specific properties are 
not differentiated for different expressions of a given biome, nor are they varied at any time during 
the year.  In other words, a semi-desert grassland in Mongolia is treated the same as a tallgrass 
prairie in the Midwestern United States.  Likewise, a sparsely vegetated boreal evergreen 
needleleaf forest in Canada is functionally equivalent to its coastal temperate evergreen needleleaf 
forest counterpart. 

At NTSG we are exploring new logic that will allow both geospatial and seasonal variation 
in the εmax parameter (Madani et al. 2014, Reich 2012). We will be developing global 
implementation, and doing global testing of this in coming years. 

UMD Land Cover Types 
Class Value Class Description 
0 Water 
1 Evergreen Needleleaf Forest 
2 Evergreen Broadleaf Forest 
3 Deciduous Needleleaf Forest 
4 Deciduous Broadleaf Forest 
5 Mixed Forest 
6 Closed Shrubland 
7 Open Shrubland 
8 Woody Savanna 
9 Savanna 
10 Grassland 
12 Cropland 
13 Urban or Built-Up 
16 Barren or Sparsely Vegetated 
 
254 Unclassified 
255 Missing Data 



   

 
 
Table 2.2.  Biome-Property-Look-Up-Table (BPLUT) for MODIS GPP/NPP algorithm with NCEP-DOE reanalysis II and the 
Collection5 FPAR/LAI as inputs.  The full names for the University of Maryland land cover classification system (UMD_VEG_LC) in 
MCDLCHKM dataset (fieldname: Land_Cover_Type_1) are, Evergreen Needleleaf Forest (ENF), Evergreen Broadleaf Forest (EBF), 
Deciduous Needleleaf Forest (DNF), Deciduous Broadleaf Forest (DBF), Mixed forests (MF), Closed Shrublands (CShrub), Open 
Shrublands (OShrub), Woody Savannas (WSavanna), Savannas (Savanna), Grassland (Grass), and Croplands (Crop). 
 

UMD_VEG_LC ENF EBF DNF DBF MF CShrub OShrub WSavanna Savanna Grass Crop 
LUEmax 
(KgC/m2/d/MJ) 

0.000962 0.001268 0.001086 0.001165 0.001051 0.001281 0.000841 0.001239 0.001206 0.000860 0.001044 

Tmin_min (C) -8.00 -8.00 -8.00 -6.00 -7.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 
Tmin_max (C) 8.31 9.09 10.44 9.94 9.50 8.61 8.80 11.39 11.39 12.02 12.02 
VPD_min (Pa) 650.0 800.0 650.0 650.0 650.0 650.0 650.0 650.0 650.0 650.0 650.0 
VPD_max (Pa) 4600.0 3100.0 2300.0 1650.0 2400.0 4700.0 4800.0 3200.0 3100.0 5300.0 4300.0 
SLA (LAI/KgC) 14.1 25.9 15.5 21.8 21.5 9.0 11.5 27.4 27.1 37.5 30.4 
Q10* 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 
froot_leaf_ratio 1.2 1.1 1.7 1.1 1.1 1.0 1.3 1.8 1.8 2.6 2.0 
livewood_leaf_ratio 0.182 0.162 0.165 0.203 0.203 0.079 0.040 0.091 0.051 0.000 0.000 
leaf_mr_base 0.00604 0.00604 0.00815 0.00778 0.00778 0.00869 0.00519 0.00869 0.00869 0.0098 0.0098 
froot_mr_base 0.00519 0.00519 0.00519 0.00519 0.00519 0.00519 0.00519 0.00519 0.00519 0.00819 0.00819 
livewood_mr_base 0.00397 0.00397 0.00397 0.00371 0.00371 0.00436 0.00218 0.00312 0.00100 0.00000 0.00000 

 
*: The constant Q10 = 2.0 is applied to fine roots and live wood, while for leaves, a temperature acclimation Q10 value is used as described 
in Equation. 
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2.3. Leaf area index and fraction of absorbed photosynthetically active radiation   
 
As illustrated in Figure 2.1, the primary productivity at a pixel is dependent upon, among 

other things, 500m LAI and FPAR, calculated with the MOD15 algorithm.  The LAI/FPAR 
product is an eight-day composite product 
(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2h_v006).   

The 8-day MO[Y]D15A2H compositing algorithm uses a simple selection rule whereby 
the maximum FPAR (across the eight days) is chosen for the inclusion as the output pixel.  The 
same day chosen to represent the FPAR measure also contributes the current pixel’s LAI value.  
This means that although primary productivity is calculated daily, the MOD17 algorithm 
necessarily assumes that leaf area and FPAR do not vary during a given 8-day period.  Compositing 
of LAI and FPAR is required to provide an accurate depiction of global leaf area dynamics with 
consideration of spectral cloud contamination, particularly in the tropics. 

 

 
Figure 2.1. The linkages among MODIS land products. 
 
2.4. Cloud/Aerosol Screening for Year-end Gap-filled MO[Y]D17A2[3]HGF 

 
Cloud and aerosol contaminated FPAR/LAI inputs from the 8-day MO[Y]D15A2H can 

introduce substantial error to the estimated GPP/NPP.  Previously, gap-filled, or so-called the 
improved Collection5 (C5 hereafter) MOD17, could only be available from the website of the 
MOD17’s Principle Investigator’s lab, the Numerical Terradynamic Simulation Group at the 
University of Montana (www.ntsg.umt.edu).  Now NASA’s operational MOD17 data production 
system is adopting the gap-filling method proposed by Zhao and his colleagues (Zhao et al., 2005) 
and is implementing it in the MO[Y]D17 operational system.  The C6 has started the year-end gap-
filled MO[Y]D17. Moreover, the coming Collection6.1 (C6.1 hereafter) near real-time 8-day 
MO[Y]D17A2H will overcome the limitation of the proposed year-end filling method by using 
the climatology FPAR/LAI as input, resulting in an improved and more useful MO[Y]D17A2H 
for near real-time users.  In the below two subsections, we detail the differences in the C6 and 



MOD17 User’s Guide                                                                                       MODIS Land Team                           

Version 4.0, 01/02/2019                                                                               Page 13 of 31 

Gap-filled C6 and how the year-end gap-filling method is implemented to generate the higher 
quality MO[Y]D17. 
 
2.4.1. C6 MO[Y]D17A2[3]H and Year-end Gap-filled MO[Y]D17A2[3]HGF 

 
The C6 MO[Y]D17A2H and MO[Y]D17A3H use the operational MO[Y]D15A2H 

disregarding the quality of FPAR/LAI, thus users should first screen-out the contaminated data 
based on the quality data layer before using the data.  As expected, the screen will result in data 
gaps, especially for cloudy tropical rainforests, leading to less usefulness of the data.  Year-end 
gap-filled data address this issue.  

The C6 gap-filled MO[Y]D17 will have different data product names and “GF” will be 
added to the names of the data files, such as M*D17A2HGF and M*D17A3HGF, to distinguish 
from the non-gap-filled M*D17A2H and M*D17A3H. 

The MO[Y]D17A2HGF and MO[Y]D17A3HGF will be generated at the end of each year 
when the entire yearly 8-day M*D15A2 are available, following the proposed method for 
improving MOD17 (Zhao et al., 2005).  Hence the Gap-filled MO[Y]D17A2HGF and 
MO[Y]D17A3HGF are the improved MOD17 which have cleaned the contaminated inputs from 
8-day FPAR/LAI. However, users cannot get MO[Y]D17A2[3]HGF in the near real-time manner 
because it will be generated at the end of a given year. This is the limitation of the year-end gap-
filling method. The detailed year-end gap-filling method is described in the below section. 
 
2.4.2 Gap-filling FPAR/LAI for Year-end Gap-filled MO[Y]D17A2[3]HGF 
 

 
Figure 2.2. An example on how temporal filling unreliable 8-day Collection 4 FPAR/LAI, and 
therefore improved 8-day GPP and PsnNet for one MODIS 1-km pixel located in Amazon basin 
(lat = -5.0, lon = -65.0) (from Zhao et al. 2005). 
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At the end of each year, we solved the issue of the contaminated FPAR/LAI inputs to 
MO[Y]D17A2[3]HGF by removing poor quality FPAR and LAI data based on the QC label for 
every pixel. If any LAI/FPAR pixel did not meet the quality screening criteria, its value is 
determined through linear interpolation between the previous period’s value and that of the next 
period to pass the screening process. Figure 2.2 illustrates how this temporal filling approach is 
applied to a MODIS pixel in the Amazon region where higher frequency and persistence of cloud 
cover exists.  

As depicted in Figure 2.2, contaminated MO[Y]D15A2H was improved as the result of the 
filling process. However, there are some unusual 8-day periods with lower FPAR and LAI but 
good QC labels. In spite of this, we have to depend on QC label because this is the only source of 
quality control. For any vegetated pixels, improved MO[Y]D15A2H time series lead to 
improvements of MO[Y]D17. Under most conditions, 8-day composited GPP will increase 
because the temporal filling process generally acts to increase FPAR. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.3. Comparisons of 8-day MOD15A2H FPAR from the original data (upper panel) with 
the year-end gap-filled (bottom panel) for two tiles. Cloudy area such as H11V08 in Amazon will 
be improved more than clear area H25V04 in Mongolia. 
 

To further demonstrate how year-end gap-filling method improves the data quality, we 
chose two tiles: 1) h11v08 (left) in Amazon with frequent cloudiness (major land cover type is 
evergreen broadleaf forests) and 2) h25v04 (right) in Mongolia (major land cover types are 
grassland and barren) with high frequent clear sky.  The two tiles representing the two extreme 
cases can reveal the improvements in the gap-filled MOD[Y]15A2H. For MOD[Y]15A2H, we 
just show FPAR because LAI has similar pattern to FPAR. For MO[Y]D17, we just show GPP 
because PsnNet and NPP have similar spatial pattern to GPP. 
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Figure 2.4. Comparisons of 8-day MOD17A2H GPP from the original data (upper panel) with 
the year-end gap-filled (bottom panel) for two tiles.  Cloudy area such as H11V08 in Amazon will 
be improved more than clear area H25V04 in Mongolia. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5. Comparisons of the annual MOD17A3H GPP from the original data (upper panel) 
with the year-end gap-filled (bottom panel) for two tiles.  At the end of each year, 
MO[Y]D17A3HGF will be generated using the year-end gap-filled MO[Y]D15A2H as input. 
Cloudy area such as H11V08 in Amazon will be improved more than clear area H25V04 in 
Mongolia. 
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 As shown in Figure 2.3, due to the frequent cloudiness in 8-day 2003081, some FPAR 
retrievals in the Amazon tile h11v08 are contaminated with unrealistic lower values and we call 
these FPAR as “gaps” in the time series for a given pixel.  At the end of each year, when all 46 8-
day MOD[Y]15A2H are available, the year-end gap-filled process fills these gaps and results in 
more reliable gap-filled FPAR/LAI time series. Using the gap-filled MOD[Y]15A2H, NASA’s 
MOD17 operational system reprocesses the data, generating MO[Y]D17A2[3]HGF.  As depicted 
in Figure 2.4 and 2.5, both 8-day MO[Y]D17A2HGF and annual MO[Y]D17A3HGF get great 
improvements.  The improvements are much more pronounced in cloudy Amazon tile h11v08 than 
clear tile h25v04 in Mongolia. 
 
2.5. GMAO daily meteorological data 

 
The MOD17 algorithm computes productivity at a daily time step.  This is made possible 

by the daily global meteorological reanalysis data, including average and minimum air 
temperature, incident PAR and specific humidity, provided by the GMAO/NASA.  The current 
version of GMAO/NASA is hourly time step data set with about half-degree spatial resolution  
(0.5 Latitude degree by 0.67 Longitude degree) generated by GEOS-5 data assimilation system 
(Rienecker et al. 2008).  We aggregated hourly data into daily scale for daily meteorological inputs 
to MOD17.  For VPD, we are using daytime VPD not daily as photosynthesis is largely occurring 
during daytime.  Daytime is determined when hourly downward solar radiation is above zero.  
Daytime VPD is the difference between daytime saturated vapor pressure estimated with daytime 
average air temperature and daily vapor pressure.  Daily vapor pressure is calculated with specific 
humidity and surface air pressure.   GMAO/NASA, like other global meteorological reanalyses, 
contains uncertainties, especially for regions with poor weather station coverage and small-scale 
convection processes which cannot be sufficiently depicted by coarse resolution meteorological 
data assimilation system.  Therefore, uncertainties in GMAO/NASA and subsequent estimated 
GPP/NPP are higher in tropics than non-tropical regions (Zhao et al. 2006). 

One major problem is the inconsistency in spatial resolution between half-degree 
GMAO/NASA meteorological data and 0.5-km MODIS Collection 6 pixel.  We solved the 
problem by spatially smoothing meteorological data to 0.5-km MODIS pixel level.  In the 
Collection 4 MOD17 system, all 1-km MODIS pixels located within the same “large” GMAO cell 
will use the same meteorological data without spatial variation.  In other words, each 1-km pixel 
retains the characteristics of the nearest neighbor GMAO cell.  As a result, a GMAO cell boundary 
line may appear in 1-km MOD17 images due to the relatively steep gradients between GMAO 
cells (Figure 2.6).  Such treatment, on a global or regional scale, may be acceptable, while at the 
local scale, especially for topographically diverse terrain or sites located at the relatively abrupt 
climatic gradient zones, it may introduce inaccurate climatic predictions for some productivity 
calculations.  
 For the problem arising from coarse spatial resolution daily GMAO data, we use spatial 
interpolation to enhance meteorological inputs. The four GMAO cells nearest to a given 1-km 
MODIS pixel are used in the interpolation algorithm. There are two reasons for choosing four 
GMAO cells per 1-km MODIS pixel: (1) this will not slow down the computational efficiency of 
creating MOD17, which is a global product, and (2) it is more reasonable to assume no elevation 
variation within four GMAO cells than more GMAO cells.  

Although there are many formulae for non-linear spatial interpolation, for simplicity, we 
use a cosine function because the output value can be constrained between 0 and 1. This function 
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still could not effectively boundary lines in a MOD17 image, and thus we utilized a modified 
cosine function of the form: 

 
                (2.1) 

 
where, Di is the non-linear distance between the 1-km MODIS pixel and any one of four 
surrounding GMAO cells; di is the great-circle distance between the 1-km pixel and the same  
GMAO cell; and dmax is the great-circle distance between the two farthest GMAO cells of the four 
being used. This ensures that Di = 1 when di = 0, and Di = 0 when di = dmax.  
 

 
Figure 2.6. Comparison of Collection 4 and Collection 4.5 MOD17A2 GPP (composite 
period 241) and MOD17A3 NPP for 2001. 

 
Based on the non-linear distance (Di), the weighted value Wi can be expressed as 
 

,         (2.2) 

 
and therefore, for a given pixel, the corresponding smoothed value  (i.e., interpolated Tmin, 
Tavg, VPD, SWrad) is 
 

          (2.3) 

 
Theoretically, this GMAO spatial interpolation can improve the accuracy of 

meteorological data for each 1-km pixel because it is unrealistic for meteorological data to abruptly 
change from one side of GMAO boundary to the other, as in Collection 4.  Figure 2.4 shows how 
this method works for MOD17A2/A3. The degree to which this interpolated GMAO will improve 
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the accuracy of meteorological inputs, however, is largely dependent on the accuracy of GMAO 
data and the properties of local environmental conditions, such as elevation or weather patterns. 
To explore the above question, we use observed daily weather data from World Meteorological 
Organization (WMO) daily surface observation network (>5000 stations) to compare changes in 
Root Mean Squared Error (RMSE) and Correlation (COR) between the original and enhanced 
DAO data.   

 
3.  Validation of MOD 17 GPP and NPP 
 
 The original strategy for validation of the MOD 17 GPP and NPP data can be found in 
Running et al. 1999.  This paper, published before the first MODIS launch, developed an overall 
plan for integrating MODIS Land data into global terrestrial monitoring.  This paper laid the 
foundation for the interaction between MODLAND and the eddy covariance fluxtower 
community, illustrating the mutual advantage of fluxtowers providing direct measurement of 
carbon and water fluxes, while MODIS land products provided a spatial extrapolation of the tower 
data.  It also laid out the conceptual basis for swapping out various components of the MOD17 
algorithm in order to isolate points of uncertainty and inaccuracy, shown in Figure 3.1.   

 
Figure 3.1. The conceptual logic we are following for validation of MOD17 GPP with fluxtower 
data where tower meteorology, ground measured FPAR and more rigorous ecosystem models are 
sequentially substituted to evaluate sources of error and variability in MOD17 (based on Running 
et al. 1999).  
 
 Early validation papers using this strategy can be found in Turner et al. 2003, 2004, and 
2006, and Heinsch et al. 2006.  Google Scholar searches now identify hundreds of similar papers. 
The current organization of MODIS land product validation is here: 
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http://landval.gsfc.nasa.gov/ 
 
and specifics for MODIS NPP can be found here: 
 
http://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD17 
 
Recent reviews of MODIS NPP validated against other global NPP data can be found in Ito 2011, 
and Pan et al 2014. 
 
4.  Description of 500m MOD17 Date Products 
 
4.1. MO[Y]D17A2H (or MO[Y]D17A2HGF) 
 

Table 4.1 lists science data sets in the 8-day MOD17A2H. Gpp_500m and PsnNet_500m 
are the summation of 8-day total GPP and net photosynthesis in carbon fixed by vegetation (0.0001 
KgC/m2/8day). Be cautious that the last 8-day (MOD17A2H.A20??361.*.hdf) of each year is not 
8-day but either 5-day or 6-day depending on normal or leap year. 

As listed in Table 4.1, for valid data (Valid_data with the valid range) of MOD17A2H, the 
real value (Real_value) of each data set (Gpp_500m, PsnNet_500m) in the units of kgC/m2/8d can 
be calculated using the following equation, 
 
          Real_value = Valid_data * Scale_Factor                                                                         (26) 
 
Table 4.1. The detailed information on science data sets in MO[Y]D17A2H (or 
MO[Y]D17A2HGF) 
Data Sets Meaning Units Date Type Valid Range Scale  

Factor 
Gpp_500m 8-day total GPP kgC/m2/8d int16 -32767 ~ 32760 0.0001 
PsnNet_500m 8-day total Net 

Photosynthesis 
kgC/m2/8d int16 -32767 ~ 32760 0.0001 

Psn_QC_500m Quality Control none uint8 0 ~ 254 none 
 
 All data sets in MO[Y]D17A2H, except Quality Control (QC) data field, Psn_QC_500m, 
have valid value ranging from -32767 to 32760 and are saved in signed 2-byte short integer (int16). 
Though data attributes list just one _FillValue: 32767 in the head file of MOD17A2 file, there are, 
in fact, 7 fill values listed below for non-vegetated pixels, which we didn’t calculate GPP or 
PsnNet. 
 
       32767 = _Fillvalue              
       32766 = land cover assigned as perennial salt or Water bodies 
       32765 = land cover assigned as barren,sparse veg (rock,tundra,desert) 
       32764 = land cover assigned as perennial snow,ice. 
       32763 = land cover assigned as "permanent" wetlands/inundated marshland 
       32762 = land cover assigned as urban/built-up 

32761 = land cover assigned as "unclassified" or (not able to determine) 
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 The QC data layer, Psn_QC_500m, directly inherits the QC data field, FparLai_QC, from 
the corresponding MO[Y]D15A2H of the same 8-day.  Detailed information of bitfields in 8 
bitword is the same as that from MO[Y]D15A2, as detailed below.  
 
Data Field Name: Psn_QC_500m 
 
  BITS BITFIELD 
  ------------- 
       0,0  MODLAND_QC bits 
       '0' =  Good Quality (main algorithm with or without saturation) 
       '1' =  Other Quality (back-up algorithm or fill values) 
 
  1,1 SENSOR 
       '0' = Terra 
       '1' = Aqua 
        
  2,2  DEADDETECTOR  
       '0' = Detectors apparently fine for up to 50% of channels 1,2 
       '1' = Dead detectors caused >50% adjacent detector retrieval 
 
  3,4  CLOUDSTATE (this inherited from Aggregate_QC bits {0,1} cloud state) 
       '00' = 0 Significant clouds NOT present (clear) 
       '01' = 1 Significant clouds WERE present 
       '10' = 2 Mixed cloud present on pixel 
       '11' = 3 Cloud state not defined,assumed clear 
 
  5,7  SCF_QC (3-bit, (range '000'..100') 5 level Confidence Quality score.  
       '000' = 0, Main (RT) method used, best result possible (no saturation) 
       '001' = 1, Main (RT) method used with saturation. Good,very usable 
       '010' = 2, Main (RT) method failed due to bad geometry, empirical algorithm used 
       '011' = 3, Main (RT) method failed due to problems other than geometry, empirical algorithm 
used 

'100' = 4, Pixel not produced at all, value coudn't be retrieved (possible reasons: bad L1B data, 
unusable MOD09GA data) 

 
 For the C6 NASA’s operational MO[Y]D17A2H, we suggest users at least exclude cloud-
contaminated cells.  For the year-end gap-filled MO[Y]D17A2HGF, users may ignore QC data 
layer because cloud-contaminated LAI/FPAR gaps have been temporally filled before calculation 
(also see previous section 2.4).  Hence for MO[Y]D17A2HGF, QC just denotes if year-end filled 
LAI/FPAR were used as inputs. Users may ignore QC data layers for the year-end gap-filled 
MO[Y]D17A2[3]HGF but just use pixels with values within the valid range. 
 
4.2. MO[Y]D17A3H (or MO[Y]D17A3HGF) 
 
 Table 4.2 lists science data sets in annual MO[Y]D17A3H. Npp_500m are the summation 
of total daily NPP through the year (0.0001 KgC/m2/year). Npp_500m have the same unit, data 
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type (signed 2-byte short int16), valid range and fill values as those listed above for the 8-day 
MOD17A2.  

Similar to MO[Y]D17A2H, as listed in Table 4.2, for valid data (Valid_data with the valid 
range) of MO[Y]D17A3H, the real value (Real_value) in the corresponding units (kgC/m2/yr) can 
be calculated using the following equation, 
 

Real_value = Valid_data * Scale_Factor                                                                         (27) 
 
 Similar to MO[Y]D17A2H, though data attributes list one _FillValue: 32767 in the HDFEOS 
MO[Y]D17A3H file, there are, 7 fill values listed below for non-vegetated pixels, which we didn’t 
calculate GPP or PsnNet. 
 
       32767 = _Fillvalue              
       32766 = land cover assigned as perennial salt or Water bodies 
       32765 = land cover assigned as barren,sparse veg (rock,tundra,desert) 
       32764 = land cover assigned as perennial snow,ice. 
       32763 = land cover assigned as "permanent" wetlands/inundated marshland 
       32762 = land cover assigned as urban/built-up 

32761 = land cover assigned as "unclassified" or (not able to determine) 
 
Table 4.2. The detailed information on science data sets in MO[Y]D17A3H 
Data Sets Meaning Units Date Type Valid Range Scale  Factor 
Npp_500m annual sum NPP KgC/m2/yr int16 -32767 ~ 32760 0.0001 

 
Currently, there is QC for the annual MO[Y]D17A3H.  
 
 
5. Practical Details for downloading and using MOD17 Data 
 
All MODIS land data products are distributed to global users from the Land Processes Distributed 
Active Archive Center, found here:  
 
https://lpdaac.usgs.gov/ 
 
Specific details about the MODIS land products can be found here:  
 
https://lpdaac.usgs.gov/dataset_discovery/modis 
 
including details about sensor spectral bands, spatial/temporal resolution, platform overpass 
timing, datafile naming conventions, tiling formats, processing levels and more.  
Specific details about the daily GPP product, including the datafiles, can be found here: 
 
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a2h_v006 
Specific details about the annual NPP product can be found here:  
 
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a3h_v006 
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including processing notes, definitions and details of earlier product Versions and Collections. 
  
The consistent improved global Collection 5 1-km MOD17 from year to 2000 to the 2015 can be 
downloaded at NTSG ftp site 
 
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/ 
6. New Science and Applications using MOD17 
 

Because NPP is the first tangible step in the transfer of carbon from the atmosphere to the 
biosphere, there have been a lot of applications of MOD 17 for global carbon cycle studies. While 
the net CO2 balance, NEE, of the land surface is of greatest interest to climate modelers, global 
NPP avoids the difficult problem of computing soil respiration and decomposition losses. So NPP 
can be more directly computed globally.  Some that NTSG has been part of are looking at time 
trends of global NPP (Nemani et al. 2003, Zhao and Running 2010). Bastos et al. 2012, and Poulter 
et al. 2014 explored the causes of the maximum annual global NPP ever recorded, in 2011, and 
found that abundant rainfall in arid lands produced much of the anomaly.  Cleveland et al. 2013 
explored the role of NPP in constraining complex biogeochemical cycles globally. And Running 
2012, postulated that global NPP might be a carbon cycle planetary boundary, because very little 
change has occurred in global NPP in the 30+ years of record.  

Terrestrial NPP also has high value for evaluating human food, fibre and fuel issues.  
Haberl et al. 2014 has shown how MODIS NPP is used to define the Human Appropriation of 
NPP, or HANPP.  Abdi et al. 2014 showed how regional food supply/demand balances can be 
analyzed with MOD 17 data. The global capacity for bioenergy done by Smith et al. 2012 used 
MODIS NPP.  Ecosystem services and natural capital are attempts to give economic value to 
ecological processes. Tallis et al. 2012 illustrated how MOD17 NPP could be part of a carbon 
service calculation.  Mora et al. 2015 analyzed global food security and agricultural growing 
season potentials with MOD 17 NPP.  Allred et al. 2015 analyzed ecosystem plant production 
potential lost to industrial activity. 

The year-end gap-filled C6 MO[Y]D17A2[3]HGF could bring more benefits than the C6 
MO[Y]D17A2[3]H to users because the former solves the critical issue of the contaminated data 
or data gaps in the 8-day FPAR/LAI, inputs to MOD17.  However, there is limitation for the gap-
filled C6 MO[Y]D17A2[3]HGF because it requires the entire yearly MOD15A2H are available, 
making the gap-filled MOD17 data are not available for near real time users.  The coming C6.1 
MOD17 will address the issue by introducing the climatology FPAR/LAI as backup to replace the 
unreliable retrievals in the operational FPAR/LAI. 
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